Copied to
clipboard

G = C42.13C23order 128 = 27

13rd non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial, rational

Aliases: C42.13C23, M4(2).6C23, 2- 1+4.9C22, 2+ 1+4.11C22, C4⋊Q85C22, C4≀C24C22, C4○D4.53D4, D4.56(C2×D4), Q8.56(C2×D4), (C2×D4).147D4, D4.9D44C2, (C2×C4).14C24, (C2×Q8).124D4, C4○D4.9C23, C23.24(C2×D4), C4.59(C22×D4), C4.109C22≀C2, D4.10D44C2, (C2×D4).38C23, (C22×C4).113D4, C4.4D44C22, (C2×Q8).30C23, C42⋊C227C2, C22.24C22≀C2, C4.D411C22, C8.C2210C22, C2.C25.4C2, (C22×Q8)⋊17C22, C22.38(C22×D4), C42⋊C211C22, C4.10D411C22, (C2×M4(2))⋊12C22, (C22×C4).284C23, C23.38C236C2, M4(2).8C223C2, (C2×C4).462(C2×D4), C2.59(C2×C22≀C2), (C2×C8.C22)⋊13C2, (C2×C4○D4).110C22, SmallGroup(128,1754)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.13C23
C1C2C22C2×C4C22×C4C2×C4○D4C2.C25 — C42.13C23
C1C2C2×C4 — C42.13C23
C1C2C22×C4 — C42.13C23
C1C2C2C2×C4 — C42.13C23

Generators and relations for C42.13C23
 G = < a,b,c,d,e | a4=b4=c2=1, d2=e2=b2, cac=ab=ba, dad-1=a-1b2, eae-1=ab2, cbc=dbd-1=b-1, be=eb, dcd-1=b-1c, ce=ec, ede-1=b2d >

Subgroups: 668 in 352 conjugacy classes, 106 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C4.D4, C4.10D4, C4≀C2, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C8.C22, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, M4(2).8C22, C42⋊C22, D4.9D4, D4.10D4, C23.38C23, C2×C8.C22, C2.C25, C42.13C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, C42.13C23

Character table of C42.13C23

 class 12A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D
 size 11222444444222244444488888888
ρ111111111111111111111111111111    trivial
ρ211-11-1-11-1-11-1-111-1111-11-1-111-1-1-111    linear of order 2
ρ3111111-1-11-1-11111-1-11-11-11111-1-1-1-1    linear of order 2
ρ411-11-1-1-11-1-11-111-1-1-11111-111-111-1-1    linear of order 2
ρ5111111-1-11-1-11111-1-11-11-1-1-1-1-11111    linear of order 2
ρ611-11-1-1-11-1-11-111-1-1-111111-1-11-1-111    linear of order 2
ρ7111111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ811-11-1-11-1-11-1-111-1111-11-11-1-1111-1-1    linear of order 2
ρ911-11-11-1-1111-111-1-11-11-1-1-11-11-11-11    linear of order 2
ρ1011111-1-11-11-11111-11-1-1-1111-1-11-1-11    linear of order 2
ρ1111-11-11111-1-1-111-11-1-1-1-11-11-111-11-1    linear of order 2
ρ1211111-11-1-1-1111111-1-11-1-111-1-1-111-1    linear of order 2
ρ1311-11-11111-1-1-111-11-1-1-1-111-11-1-11-11    linear of order 2
ρ1411111-11-1-1-1111111-1-11-1-1-1-1111-1-11    linear of order 2
ρ1511-11-11-1-1111-111-1-11-11-1-11-11-11-11-1    linear of order 2
ρ1611111-1-11-11-11111-11-1-1-11-1-111-111-1    linear of order 2
ρ17222-2-200-20-20-22-2202000200000000    orthogonal lifted from D4
ρ18222-2-20-200022-22-2200-20000000000    orthogonal lifted from D4
ρ1922-2-2200-202022-2-20-2000200000000    orthogonal lifted from D4
ρ2022-22-2200-2002-2-220020-2000000000    orthogonal lifted from D4
ρ21222-2-202000-22-22-2-20020000000000    orthogonal lifted from D4
ρ2222-22-2-2002002-2-2200-202000000000    orthogonal lifted from D4
ρ2322-2-220-2000-2-2-22220020000000000    orthogonal lifted from D4
ρ2422222-200200-2-2-2-20020-2000000000    orthogonal lifted from D4
ρ2522222200-200-2-2-2-200-202000000000    orthogonal lifted from D4
ρ2622-2-220020-2022-2-202000-200000000    orthogonal lifted from D4
ρ2722-2-22020002-2-222-200-20000000000    orthogonal lifted from D4
ρ28222-2-2002020-22-220-2000-200000000    orthogonal lifted from D4
ρ298-8000000000000000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C42.13C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 15 27)(2 7 16 28)(3 8 13 25)(4 5 14 26)(9 29 21 17)(10 30 22 18)(11 31 23 19)(12 32 24 20)
(1 17)(2 10)(3 31)(4 24)(5 32)(6 21)(7 18)(8 11)(9 27)(12 14)(13 19)(15 29)(16 22)(20 26)(23 25)(28 30)
(1 5 15 26)(2 25 16 8)(3 7 13 28)(4 27 14 6)(9 32 21 20)(10 19 22 31)(11 30 23 18)(12 17 24 29)
(1 11 15 23)(2 24 16 12)(3 9 13 21)(4 22 14 10)(5 18 26 30)(6 31 27 19)(7 20 28 32)(8 29 25 17)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,15,27)(2,7,16,28)(3,8,13,25)(4,5,14,26)(9,29,21,17)(10,30,22,18)(11,31,23,19)(12,32,24,20), (1,17)(2,10)(3,31)(4,24)(5,32)(6,21)(7,18)(8,11)(9,27)(12,14)(13,19)(15,29)(16,22)(20,26)(23,25)(28,30), (1,5,15,26)(2,25,16,8)(3,7,13,28)(4,27,14,6)(9,32,21,20)(10,19,22,31)(11,30,23,18)(12,17,24,29), (1,11,15,23)(2,24,16,12)(3,9,13,21)(4,22,14,10)(5,18,26,30)(6,31,27,19)(7,20,28,32)(8,29,25,17)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,15,27)(2,7,16,28)(3,8,13,25)(4,5,14,26)(9,29,21,17)(10,30,22,18)(11,31,23,19)(12,32,24,20), (1,17)(2,10)(3,31)(4,24)(5,32)(6,21)(7,18)(8,11)(9,27)(12,14)(13,19)(15,29)(16,22)(20,26)(23,25)(28,30), (1,5,15,26)(2,25,16,8)(3,7,13,28)(4,27,14,6)(9,32,21,20)(10,19,22,31)(11,30,23,18)(12,17,24,29), (1,11,15,23)(2,24,16,12)(3,9,13,21)(4,22,14,10)(5,18,26,30)(6,31,27,19)(7,20,28,32)(8,29,25,17) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,15,27),(2,7,16,28),(3,8,13,25),(4,5,14,26),(9,29,21,17),(10,30,22,18),(11,31,23,19),(12,32,24,20)], [(1,17),(2,10),(3,31),(4,24),(5,32),(6,21),(7,18),(8,11),(9,27),(12,14),(13,19),(15,29),(16,22),(20,26),(23,25),(28,30)], [(1,5,15,26),(2,25,16,8),(3,7,13,28),(4,27,14,6),(9,32,21,20),(10,19,22,31),(11,30,23,18),(12,17,24,29)], [(1,11,15,23),(2,24,16,12),(3,9,13,21),(4,22,14,10),(5,18,26,30),(6,31,27,19),(7,20,28,32),(8,29,25,17)]])

Matrix representation of C42.13C23 in GL8(𝔽17)

313134107010
31341310707
41331307107
134313010107
131414311601
001160008
3141314016116
161000900
,
00100000
00010000
160000000
016000000
00000010
00000001
000016000
000001600
,
0016100115
000000160
1610011500
000016000
000160000
0001600161
016000000
0160016100
,
41331307107
134313010107
313134107010
31341310707
3141314016116
161000900
131414311601
001160008
,
00001000
1610011500
00000010
0016100115
160000000
1610001600
001600000
0016100016

G:=sub<GL(8,GF(17))| [3,3,4,13,13,0,3,16,13,13,13,4,14,0,14,1,13,4,3,3,14,1,13,0,4,13,13,13,3,16,14,0,10,10,0,0,1,0,0,0,7,7,7,10,16,0,16,9,0,0,10,10,0,0,1,0,10,7,7,7,1,8,16,0],[0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,16,0,0,0,0,0,0,0,1,0,0,0,16,16,16,0,0,0,0,0,0,0,1,0,0,0,16,16,0,0,0,0,1,16,0,0,0,16,0,0,15,0,0,0,0,1,1,16,0,0,0,16,0,0,15,0,0,0,0,1,0,0],[4,13,3,3,3,16,13,0,13,4,13,13,14,1,14,0,3,3,13,4,13,0,14,1,13,13,4,13,14,0,3,16,0,0,10,10,0,0,1,0,7,10,7,7,16,9,16,0,10,10,0,0,1,0,0,0,7,7,10,7,16,0,1,8],[0,16,0,0,16,16,0,0,0,1,0,0,0,1,0,0,0,0,0,16,0,0,16,16,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,15,0,0,0,16,0,0,0,0,1,1,0,0,0,0,0,0,0,15,0,0,0,16] >;

C42.13C23 in GAP, Magma, Sage, TeX

C_4^2._{13}C_2^3
% in TeX

G:=Group("C4^2.13C2^3");
// GroupNames label

G:=SmallGroup(128,1754);
// by ID

G=gap.SmallGroup(128,1754);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,2019,248,2804,1411,718,172,2028]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=e^2=b^2,c*a*c=a*b=b*a,d*a*d^-1=a^-1*b^2,e*a*e^-1=a*b^2,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b^-1*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

Export

Character table of C42.13C23 in TeX

׿
×
𝔽